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Abstmd. "he measurement of spin-: observables using a Stern-Gerlach type device is 
studied. A magnetic field with a dominant dipole component Leads to a measurement of 
spin in one direction. The measurement is shown to be feasible (in principle) for electrons 
as well as for neutral particles. A quadrupole field leads to a joint measurement of two 
incompatible spin observables. Again, both the electron and the neutral case are presented. 
The accuracy of the joint measurement is compared to the limit imposed by the uncertainty 
principle. 

1. Introduction 

The Stem-Gerlach device is one of the classic illustrations of quantum mechanical 
measurement theory [l, 21. Because of the relatively simple nature of the observables 
involved, especially for the spin-$ case, it indeed forms an ideal testing ground for 
quantum measurement formalisms. Since in recent years a lot of work has been done 
on such formalisms, especially on those going beyond the standard von Neumann 
theory, the problem of spin-f measurements in general, and in particular the Stem- 
Gerlach ( sG) ,  still arouse interest [3-61. 

The standard SG set-up is sketched in figure 1. Particles move in the 1-direction 
through an inhomogeneous magnetic field, perpendicular to their direction of motion. 
The magnetic field, with an overwhelming dipole component, is modelled by a vector 
potential A(q, t )  = (q2(a - bq,), 0,O) for t E (0,7), and zero elsewhere. Thus the Hamil- 
tonian, for spin-f particles with mass m, magnetic moment p and charge Q, is given by 

(1) 
1 
2m fi  =- ( [ j ? ,  - Q&(a - & ~ ~ ) ] * + j ? ~ + j ? ~ ) + ~ ~ ~ ( & ~ * ~ ~  + ( a  - 6&)s3) 

I 14 

Figure 1. Schematic cross section of a Stem-Cerlach set-up. The inhomo- 
geneous magnetic field is indicated by the dashed liner. The electrons move 
initially in the I-direction, perpendicular to the plane of the drawing. 
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(carets denote operators; 6,, &2 and dinote the Pauli matrices, with eigenvalues 
*l). First we shall discuss neutral particles: Q = O .  We choose our units such that 
2m = b = h = 1. Hence the Hamiltonian simplifies into 
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(2) fi+'+ *2+ -2+ 
1 P z  P 3  ZIL;26+4P(a-433),33. 

The last two terms in equation (2) describe spin precession around an axis making an 
angle rp = tan-l(qd(a - 4,)) with the 3-direction. The dipole component of the magnetic 
field is usually taken very large, so that the point (0.0, a)  is far outside the beam area. 
Thus rp << 1, and 6, is approximately conserved we may neglect the ~,62-term. Then, 
in the Heisenberg picture 

f i 3 ( t )  = l % , ( O ) + b & > i f  (3) 

whereas & and $I are conserved. 
In quantum measurement theory [l], originating with von Neumann, the object 

and the apparatus are initially independent. The object t) apparatus interaction then 
brings about a correlation between the observable to be measured and the apparatus 
state. Finally some apparatus variable is read out (pointer observable), whose value 
gives information about the object observable that was to be measured. In the SG, the 
spatial variables function as the apparatus variables, whereas the spin observables 
represent the object variables. Therefore, given the way the SG is seen as a measuring 
instrument, it is natural to assume the particle state to be initially a product of the 
spatial part I<) and the spin part It)). The interaction, as (3) indicates, separates the 
particle beam into two sub-beams, the spin-up particles deflected upwards, the spin- 
down particles downwards. The measurement time is normally taken so large that the 
two sub-beams are fully separated [l]. The upper beam then contains only spin-up 
particles, the lower only spin-down particles. Thus reading out, e.g., i3 tells us the 
value of &3. Blocking one of the beams leaves a beam of particles sharp with respect 
to G3. As G3 is conserved, this means that the measurement realizes a first kind 
measurement of &3. 

If a and/or rare  not large enough to satisfy the above conditions, the measurement 
is not perfect in the von Neumann sense. It is clear, however that from a pragmatic 
point of view, the so still measures 6, in some weaker sense. Accordingly, we will first 
discuss a formalism that can cope with such imperfect measurements, and then apply 
it to the so case, using both neutral and charged particles. Finally, an SG-type device 
with quadrupole magnetic field is studied. This device realizes a joint measurement of 
incompatible spin observables. This latter set-up can, however, not reach perfection 
even asymptotically because of the limits imposed on joint measurements by the 
uncertainty principle. 

2. Non-ideal measurements 

In realistic situations, measurements are not described by self-adjoint operators, or 
projection-valued measures ( W M S ) ,  but rather by positive operator-valued measures 
(WVMS) [2, I, 81. The POVM notionAfonns an extension of von Neumann's axioms. For 
a discrete outcome set, a pom {MJ is a set of operators satisfying 



Spin measurements with a Stern-Gerlack device 2003 

The operator f i h  need n9t satisfy eh = ki, and is therefore not necessarily a projector. 
Moreover, in general [ M h ,  MI] -  # 0 if k # 1. The probability of outcome k is given by 
Tr(&% 1. 

If we measur! a pow {&}, this may be seen as a non-ideal measurement [ 9 ]  of 
another POW {NI} if there exists a matrix ( A h l )  such that 

Gk = Ah1& A h l > O  E A w = l .  (5) 
I h 

The matrix (Ahl) is a stochastic matrix. We see that the {kh}-distribution Tr($fih) is 
a 'smeared' version of the {i$-distribution. Even if the state is such that the latter is 
sharp, a measurement of {Atk}  will in general not give one result with certainty. The 
non-ideality notion was introduced by Davies [7] and by PrugoveEki [lo]. It has been 
applied to several measurement schemes (see, e.g., [ l l ]  and references in [9,12]). In 
the next section we shall see that the SO can also be treated by means of the non-ideality 
concept. 

A major area of applications of ( 5 )  is formed by joint measurements of incompatible 
observahles. Clearly, e.g. &and 63 are incompatible, so that they cannot be measured 
jointly. But non-ideal measurements of 62 and &3 may well be compatible. Consider 
a bivariate POVM {Rmn}. If it satisfies 

A,,>O 1 Amh = 1 
m 

1 i m n  Amh&k 
h 

( 6 )  

we call a measurement of {&} a joint non-ideal measurement of {Gh} and {GI}. Joint 
non-ideal measurements of several pairs of incompatible observables have been studied 
[12, 131 (cf also 1141). In particular, PrugoveEki [lo] and Busch [5] have discussed 
the spin-$ e3 case. The joint measurement POWE resulting from this theory have 
been connected to experiments for the analogous light polarization 1151 and neutron 
interferometry [ l l ]  situations. Here we shalI show that spin-f joint measurements in 
the sense of (6) can also be realized by an SO set-up with a quadrupole magnetic field. 

E i,. = c Pnlfil fl.6 2 0 Zp.,=l 
m I n 

3. Dipole Stern-Gerlacb 

Consider once again the SO, described by (2), assuming that a is so large that the $2&a 
term may be neglected. As said above, after a correlation between G3 and the apparatus, 
i.e. the spatial variables, is effected, the measurement is completed by reading out 
some apparatus observable [ 1,2]. This read-out variable should if possible be chosen 
so as to optimize the measurement. In the following we shall, prompted by (3), take 
the momentum F3 to be that read-out variable. Qualitatively similar results, however, 
follow when position is used for this purpose, and sometimes this turns out to be 
preferable (namely, the electron quadrupole case, to be treated later on). As discussed 
above, we take the particle's state to be initially a product of the spatial part 15) and 
the spin part I$). After time T, F3 has a probability distribution p ~ + ~ ( p , ,  T), given by 

ca 

P l d P 3 ,  = I_, dPa P l d P 2 ,  P 3 ;  7) 

= I(t19)121(P3-t~~15)12+1(119)IZI(P3+f~~15)12 
P I ~ P ~ ,  ~ 3 ;  7) = T ~ [ ~ P z ,  P ~ ) ( P ~ , P ~ I  e ~ p ( - i ~ ~ ) l ~ ) ( ~ l ~ l ~ ) ( ~ l  exp(i&l 
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(IT)& denote 6, eigenstates; Ip3*ipr) is the eigenstate of $,(O) with eigenvalue 
p,*$p~).  The measurement’s m w  on the spin-; space @’ is uniquely determined by 

fi(p3) = A+(P,)~T)(T[+~-(PS)I.~)(~I L(p3)  * I(P3F&dt)1z (9) 
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PI+)(P~, ~)+(Jllfi(p,)lJl), so that 

and A-(p,) # 0 for p3 > 0 in general. Since 

the measurement is for any value of r a non-ideal &3 measurement in the sense of (5). 
At this point it is perhaps more convenient to divide the p2, p3-plane into two areas, 
p3 > 0 and p, < 0, corresponding in the ideal case to spin-up and spin-down, respectively. 
The POW then reduces to a two-element discrete (‘yes-no’) POW { M k }  ( k =  *), 

fi* = A*+lT)(T l+L- lJ) (& l  (Ila) 
r r-  r m  1 

In a 2 x 2  non-ideality matrix, such as ( I lb)  to which the functions h,(p,) have been 
reduced, the off-diagonal elements A+- and A +  correspond to the probabilities of 
wrong results. Thus we define 

(12) .- I - A A + -  + A-+) 
as a measure for the lack of quality of this SG measurement. In the worst possible 
case, realized at r= 0, the outcome does not depend on the input spin state at all (i.e. 
AV = i,) so that K =$. Ideally the off-diagonal elements vanish: AV = 6, and K = 0. Only 
when T is much larger than the @,-width of the beam will this be the case. Only then 
the measurement is a first kind measurement, and the POVM reduces to a PVM. But the 
fact that the pow or, equivalently, the measurement outcome probability distribution 
can be represented in the form of non-ideality ( S ) ,  is independent of this condition 
on r. Even when the beams are not fully separated, the final $,,-distribution is unam- 
biguously related to the initial S,,-distribution. 

If we do not neglect the &+em in (2), equation (7) is no longer generally valid. 
But note that the Hamiltonian still has the symmetry property 

[i,063, A1_=8 (13) 

f, denoting reflection of the position coordinates in the 1,3-plane. Therefore, if the 
initial spatial state is 1,3-reflection symmetric (!,I-$)= If)), it can be shown that 

PIdPz9P3; 7) =P&-PzrP3; 7). (14) 

Combining (14) with (8) and (7), and with {fi(p.,) dp,}’s definition, we get 

so that the measurement POVM can still be written in the form ( 5 ) ,  with {&} a 
&.,-measurement. For initially reflection symmetric wavepackets, the measurement is 
a non-ideal spin measurement regardless of the values of a or 7. 
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The Schrodinger equation w,as integrated nnmericallyt, using the Hamiltonian of 
(2). From thefinalstateexp(-iTH)l[}Ol$} thusobtained, t h e p o v ~  and thecorrespond- 
ing measurement inaccuracy were calculated as outlined above. We took the initial 
spatial state I f )  to he Gaussian in the 2- and 3-directions, and monochromatic in the 
1-direction. Explicitly, 

(P,, p 2 ,  p31n = c% -pi.) exp(-+ppji/v2 -$pi /  d c = (2?r)p4(  U~O~)"/'. (16) 

Thus 1-momentum is sharp, whereas in the other directions the variances are given by 
v2 and (A2e3)= U , .  Starting from the state (16), the Hamiltonian (2) gives for 

a + q  when we may neglect the &&2-term, 

K- (T )  K(T)[ , , ,=+-$ erf($&+p-u;L/2). (17) 
The value of K, calculated for the measurement with initial state (16), is plotted in 
figure 2 for several values of a, together with the limit curve (17). Quality increases ( K  

decreases) with T. Indeed, as expected, the limit value of K achieved for large T, 

decreases with a. Moreover, as a increases, the curves approximate (17) better and 
better. (The a = O  case will be treated in more detail in the next section.) 

.~ ........................................ 
..................... .. a a . 5  

lo'l T"a/ -- a=5 

Figure 2. Numerical results for sc: spin measurement 
0 I 2 quality e versus interaction time T and field strength a 

The strong field limit (a+m) is also plotted (solid line). 
(Neutrals: p=2, initially 16) as in (16) with v2=v,=$.)  

K 

r 

For electrons Q = -e, m = me and p = gpB (ps  is the Bohr magneton). Now we 

(18) 
Again, if U is taken sufficiently large, g2G2 may he neglected and &3 is conserved, so 
that the measurement is a non-ideal measurement of &3 in the sense of ( 5 ) .  Thus the 
non-ideality formalism may be applied to electrons as well as to neutrals. 

But the behaviour of electrons is also different from that of neutrals in certain 
respects. This can be seen from figure 3. Here a typical result of a numerical integration 
of the Schrodinger equation corresponding to the Hamiltonian (18) is plotted. Initial 
conditions are the same as for neutrals (apart from the values of the variances). But 
the wavepackets are not symmetrically deflected. This (numerical) result can be under- 
stood by means of the following heuristic argument. Consider first an electron in a 
homogeneous magnetic field of strength B in the 3-direction. Classically, it will move 

t The integration of the Schr6dinger equation was done using two methods. In the first method the position 
representation was used, with a discrete mesh. Convergence of the procedure was first order in time, and 
second order in position. In the second method we worked in the representation of the Landau states [cf 
(19)]. Both methods agreed to within numerical precision. The calculations were done on an IBM RS/6000 
computer. 

choose units such that h = b = e = 2m. = i g p B  = 1. Hence the Hamiltonian becomes 

A = [ j ? ,  + 42(a - c3)12+$:+ ti+ c2&+ ( a  - 
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-5 0 5 

4 

Fiure 3. Typical output distribution for the electron SG set-up 
The density of dots indicates the p 2 .  ps-probability density. 
(Electrons: 0=16; T =  1.9; initially l ~ ) = f l ( ~ r ) + l ~ ) ) ,  10 as 
in(16) with v,=8, y=$audpin=0.03 . )  

in spiral trajectories. Quantum mechanically, these correspond to the so-called Landau 
orbits [16]. The energy in the 1,Z-degrees of freedom is quantized into discrete levels 

E,, = (2n  + l)B n=O,1,2 ,.... (19) 
If the field inhomogeneities are sufficiently small with respect to the beam width (in 
the scaled units we use, (Az&<< l), we may neglect any transition between different 
Landau levels (adiabatic approximation). Then only the drift of the levels due to the 
inhomogeneities in the 3-direction is to be taken into account: we approximate the 
magnetic field strength by B = a - q3.  Straightforward computation of the energy 
gradient then gives the force 

F. = -VB. - [ ( 2 n  + l)+u3]e3 (20) 
where we have included the spin dependent force. Accordingly, n = no+ 1 spin-down 
electrons experience the same upward force as n = no spin-up electrons. Therefore the 
initial spatial state should be constructed so as not to contain both n = no and n = no+ 1 
electrons. We may, for example, match the beam to the field strength in orc'er to 
approximate the n = O  Landau state. In the computations we therefore took the 
%variance ofthe Gaussian (16) to be uz = f a .  Moreover, (20) shows that n = 0 spin-down 
electrons will experience a zero net force: they are not vertically deflected (in accord 
with figure 3). Therefore for the electron case the two integration areas in (11) are 
replaced by p3  > r and p3  < r. 

If we include the gZs2 term, however, the symmetry property (13) does not hold 
any longer, unless pi.= 0. Consequently, for electrons the measurement cannot be 
written in the non-ideality form ( 5 )  for arbitrary a. But if a is large enough either to 
allow the neglect of &j2 or of the term 2pi.&a (a' >>pin), the POVM still approximately 
satisfies ( 5 ) ,  taking {N,} to be a 63-measurement, and we may compute the measure 
(12). Results are shown in figure 4. For the conditions used there, the numerically 
computed final electron states are in accord with the symmetry (13) with an error of 

. . . ,  a=* 

IO.' I .... a d 2  

, _ _  a.16 

K 104 I \ !  a=32 

1 0 . ~  - limit , Figure 4. Numerical results for electron SC: spin measure- 
ment quality I( versus inleraction time 7 and field strength LI. 
(Electrons: initially If) as in (16) with v2=&o, U,=+ and 0 I 2 

z p,.=O.O3.) 
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less than 1%. Note that the separation of the two integration areas at p3 = T only works 
until the spin-up packet comes in the q3=a area. Then the wavepacket will stop 
moving. But the separation point will not stop, so that measurement quality will 
eventually decrease rather than approach a constant limit. This effect, visible in figure 
4, is thus an artifact caused by the crude choice of integration areas. 

The need for the approximation discussed in the beginning of the previous para- 
graph can, however, be overcome. We may, for example, add an electric field to 
compensate for the 2pi&tenn. Then the Hamiltonian would satisfy (13) exactly, and 
the measurement would be a non-ideal &3-measurement, exactly satisfying (5) for 
?,-invariant wavepackets. Thus the restriction a 2  >> pi. would be removed. 

We see therefore that spin measurements are possible for electrons, at least in 
principle. This contradicts a widely reproduced opinion of Bohr’s [17,18] (cf also 
[ 191). Bohr argued, using qualitative arguments, that the variation of the Lorentz force 
across the beam width must be smaller than the spin-dependent force for the SG to 
work. This leads to the condition Aq2< A/2r (where Aq2 is the beam’s width in the 
2-direction and A is the de Broglie wavelength of the electrons). According to Bohr 
this condition implies that diffraction effects blur the beam, so that the SG would io 
effect be impossible for electrons ([17], p 335). But Bohr ignores that the Lorentz force 
causes the Landau quantization, so that the electrons are no longer ‘free’, strictly 
speaking. Thus the variation of the Lorentz force over the beam width, which is small, 
only causes some transitions between Landau levels, rather than a complete blurring 
of the beam, as i s  evidenced by the numerical results (figure 3). 

4. Quadrupole field 

If a = 0, the magnetic field has a quadrupole configuration. Obviously, for neutrals, 
the Hamiltonian (2) still satisfies the inversion symmetry (13). But additional sym- 
met$es arise. Denote rotation over an angle 0 around fpe 1-axis for the space variables 
by R(B)=exp(-iOL,), and for the spin variables by S(e)=exp(-ifO&,). Then we see 
that, for neutrals, the Hamiltonian remains unchanged if we rotate the spatial variables 
one way, and the spin variables the other: 

Rewriting (pz,  p,) = (p  cos 0, p sin e), the probability density p,+)( 0 , ~ )  of finding the 
particle at angle 8 in the p z ,  p3 plane at t = T is 

[ R ( e ) ~ ~ ( - e ) i A I . , , ~ I i ( e ) ~ ~ ( - e ) ~ ~  = Al.=,. (21) 

plul(p2, p 3 ;  T) being given by (8). The minus sign in the definition of {h(e) de} means 
that we interpret the detection of a particle at angle -0  in the p z .  p,-plane as 
measurement result 8. This compensates for the minus sign in the argument of S in 
(21). The rotational symmetry (21) of the Hamiltonian implies (see appendix) that, if 
the initial spatial part of the particle state is k(e)-invariant, the POVM { n i ( e )  de} can 
be parametrized as 
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Note that not only is {fi(O)dB} a POVM, but so is {(~+&2cos0+&3sine)de}.  The 
latter was given by Helstrom 181 as a measurement of spin direction. Because 

lo2rf(B)dB=l f ( s ) a o  (24) 

the quadrupole SG is a non-ideal measurement of Helstrom's spin direction observable. 
The smearing function f still depends on two parameters, a and $. They characterize 
the measurement's quality and bias, respectively, and are determined by the specifics 
of the set-up. In particular the inversion symmetry (13) implies that &=O. The 
remaining parameter a depends on r and the input state. 

Altematively, we can separate the p 2 ,  p ,  plane into two half-planes, like we did in 
the previous section. Let the line p2  cos(7) - p ,  sin(7) = O  divide the;wo areas. The 
probability is distributed oIer these two areas according to the POVM {A!,,(?)} ( m  = i), 
which is obtained from [ M ( B )  de} by integration over a semi-circle (using Oo=O), 
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k ( 7 )  = i - f i+(V) .  

Thus, the POW {fi,,.(q)} is a non-ideal measurement of spin in direction 7, with the 
analogue of the matrix ( 11) given by 

Accordingly, the measurement's quality is characterized by ~ ( 7 )  = f -  a/.. 
Now divide the p z ,  p ,  plane into its four quadrants. The probability distribution 

over these four regions can be summarited in a bivariate POW {R,,."}, m, n = *. This 
POVM can be obtained by integrating M ( B )  over the respective quarter circles. The 
marginal POVMS of {R,,,"} then correspond to a division of the p 2 ,  p ,  into two half-planes 
by the p2  = 0 and p ,  = 0 lines, respectively. It is easily seen that they are given by 

Hence the bivariate POW {&"} represents a joint non-ideal measurement of the 
incompatible observables &2 and G3 151, in the sense of (6) .  Moreover, as 7 in (25) is 
arbitrary, the quadrupole SO may be considered to measure spin in all the directions 
in the 2,3-plane jointly, in a non-ideal way. 

The numerically calculated value for ~ ( 7 )  of (26) is plotted in figure 5 (dashed 
curve). We again took the initial spatial state to be Gaussian as in (16), but now u2 = U), 

Figure 5. Numerical results for quadrupole SG: spin measun- 
ment quality K versus interaction time 1, both for neutrals 
(dashed) and for electrons (solid). For electrons position is 
used as read-out variable. The fundamental quantum bound 
and the limit valid for spin direction measurements. (32) and 

,(30) respectively, are indicated by horizontal lines. (Neutrals: 
~=2,initially~h)asin(16)withv,=v,=f;clectrons: initially 
I f )  as in (16) with u2=~,=$andpjm=0.03.)  

0.3 
K 

0.1 

0.0 
0 1 2 

r 
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so that the state is rotation invariant. The K curve of Bgure 5 is, in contrast to those 
of Bgure 3, not monotonic. This is a consequence of the way in which the correlation 
between spin angle and momentum angle comes about, as sketched in the following 
qualitative argument. In the uncorrelated initial state, the spin part of the wavefunction 
can at each point (except the origin) ( p  cos 0, p sin 6 ' )  be separated in a part with spin 
direction -6' on the one hand, and a part with direction a- 6' on the other. Roughly 
speaking, the former propagates outward whereas the latter moves inward. As the 
particles with a - 0 spins approach the origin from all sides, interference occurs. This 
causes the local minimum of the curve in figure 5. Eventually, a final state results that 
consists of a ring-like distribution of outward moving particles in the 2,3-plane, in 
which the spin direction is -6'. 

If a = 0, the Hamiltonian (18) for electrons reads 

A = [p ' ,  + 4,l&312+p';+p':+ &Bz - G3B3. (28) 

The full rotation symmetry (21) is out of the question. Nevertheless, the Hamiltonian 
remains invariant if we transform the spatial part according to & c) *&, and the spin 
part according to B, U *B3.  In other words: reflection symmetries analogous to (13) 
hold for both the 6' =$zr and 6' =:a directions. Since, as shown in the dipole section, 
non-ideality (5) directly follows from the symmetry property (13) if the initial state 
also has that symmetry, we still have the possibility of realizing a joint measurement 
of two incompatible spin observables, namely BW14 and &3,,,4 

Bn/4:= &4 (B,+ G3) B3+:= $D (Bz - B3). (29) 

In figure 5 the calculated value for K in one of the two directions is plotted versus 
that of neutrals. For electrons it turns out to be better in this particular con6guration 
to use 4z and 43 as read-out variables, rather than momentum. This is possible because 
the symmetry properties that we use [namely, the 6' =$7r and 6' =:a reflection sym- 
metries analogous to (13)] hold for position as well as for momentum. As in zeroth 
order { 3 ( t )  = &(O) +B3tz, the K-curve starts quadratically, rather than linearly. 

Note that, because Os a S 1, the quality K of the matrix (26) is limited by 

1 1  
2 7 r  

K ( q )  a----. 

For neutrals the SG jointly measures spin in UN directions in the 2,3-plane, but for 
electrons, on the other hand, the measurement is a joint measurement of only two spin 
observables. It is not realized via a spin angle measurement, such as (23). Therefore 
only the uncertainty principle for joint measurements of two incompatible observables 
[5,10-121 gives a limit for the latter case, i.e. 

( K , , ~ ~  -#+ (K~*/~-;) '  s $. (31) 

For a rotation symmetric initial state, such as the Gaussian (16) with U,= v3 which 
was employed in the quadrupole set-up calculations for both electrons and neutrals, 
K,+= K ~ , + .  Then (31) implies 

K+ 4-W. (32) 

This limit is weaker than (30). Indeed, as figure 5 indicates, electrons may achieve 
better quality in this joint measurement than do neutrals. 
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Appendix 

Symmetry (21), together with rotational invariance of the initial spatial state 15) and 
definition (22), implies 

$(e)h(ef)s^+(e) = $r(e'+ e). (A.1) 

lii(s) = s^(e)h(o)s*+(e). (A.2) 

The operator h(O), like any positive operator (efect)  on @', can be parametrized as 

(A.3) G(o) =- 1 +-(?+e, sin 4 + ~ ,  cos e, cos 4 t e3 sin e, cos 4 )  

(a, p 30). Integrating (A.2) over 0 gives, using the pow normalization (4), 

In particular, 

B -  a 
27r 27r 

From (A.4) it follows that a + p  = I  and 4 = 0, so that h ( 6 )  can be written in the 
form (23). 
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